
1.  Introduction
The rising trend in global mean sea level is an integrative measure of Earth's warming climate, as melt-
ing land-ice and rising water temperatures increase ocean mass and volume (e.g., Church & White, 2011; 
Frederikse et al., 2020). However, the processes contributing to sea level change interact such that regional 
sea-level trends and variability can differ substantially from the global mean trend (Figure S1; Hamlington 
et al., 2020; Holgate & Woodworth, 2004). Coastal communities require accurate information on current 
and future sea-level change in order to respond to ongoing societal challenges such as enhanced storm 
surge risk and tidal flooding (e.g., Kirezci et al., 2020).

With multi-decadal records, tide gauges (TGs) are an essential data source for measuring sea-level change 
(e.g., Mitchum et al., 2010). TGs have revealed invaluable information about Earth's climate and geodetic 
properties (Cf. Douglas, 1991; Wöppelmann et al., 2006). However, the network of TG stations is heavily 
biased toward the Northern Hemisphere, especially regarding the longer and quality-controlled records 
(e.g., Thompson et al., 2016). Additionally, TGs are point sources that capture the sea-level change only 
at a specific location. TGs therefore undersample dynamic coastal environments, which prevents a full 
understanding of how sea-level variability propagates toward and along the coast. This shortcoming has 
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been alleviated in recent decades with spaceborne radar altimeters providing observations of open-ocean 
changes in sea level with near global coverage (±66°) since 1992 (Fu et al., 1994).

Conventional pulse-limited satellite radar altimeters operate by transmitting microwave pulses toward the 
Earth and measuring the time delay of the returned echoes to estimate sea surface height (SSH; Chelton 
et al., 2001). These measurements have significantly advanced our understanding of the global oceans. For 
example, early missions revealed a highly turbulent, eddy-filled ocean. Contemporary missions provide 
measurements of the marine geoid upon which spaceborne observation systems rely, as well as sea-lev-
el changes informing climate research (Stammer & Cazenave, 2018). However, radar measurements are 
challenged in the coastal zone (within ∼20 km from land) where many of the impacts of sea-level change 
occur. These challenges stem primarily from the presence of land in the altimeter and radiometer footprint, 
which decreases the accuracy of the return pulse geolocation and the applied geophysical range corrections, 
respectively. Similarly, heterogeneity in the radar footprint causes the shape of the waveform to deviate from 
the shape returned over the open ocean. While the theoretical Brown model (Brown, 1977) is an accurate 
representation of the open-ocean waveform, it doesn't capture the more complex geometry of coastal wave-
forms (see Vignudelli et al., 2011 and references therein).

Ongoing advancements in altimeter technologies are addressing these challenges by enabling more precise 
data returns up to ∼300 m of the coast. For example, the SARAL/AltiKa mission's Ka-band (36.5 GHz) radar 
has improved the radar footprint diameter and sampling frequency, enabling new observations of coastal 
circulation (Jebri et al., 2016; Pascual et al., 2015) and better measurements of significant wave heights (Ver-
ron et al., 2018). Sentinel-3, and soon the NASA/CNES SWOT satellite, utilize synthetic aperture radar al-
timeters that preserve the phase of the signal return such that the Doppler shift can be exploited to improve 
retrievals in the coastal zone (Raney, 1998). However, sophisticated retracking algorithms are required for 
near-shore analysis, with ongoing development for specific coastlines (Cazenave et al., 2019; e.g.,Dinardo 
et al., 2020).

The wide variety of near-shore geophysical processes calls for a multi-faceted observational approach to 
measure and understand the spatiotemporal variability of sea level in the coastal zone. Parallel to the pro-
gress in coastal altimetry, technological advancements in recent decades have led to the development of 
spaceborne laser altimeters. ICESat, which operated sporadically between 2003 and 2009, demonstrated 
potential for high resolution measurements of sea level, but gaps in coverage makes recovering long-term 
trends non-trivial (Urban et al., 2008). In 2018, NASA launched its Advanced Topographic Laser Altime-
ter System (ATLAS) aboard ICESat-2, which measures ice, ocean and land surface elevations with a 91-
day repeat cycle at the poles and “mapping mode” at lower latitudes. While ICESat-2's primary scientific 
objectives are not centered around ocean elevation observations, there is nevertheless much potential for 
ICESat-2 to bring new insight into coastal sea-level changes and its underlying dynamics. An ocean eleva-
tion product, ATL12, has been recently derived from the underlying geolocated photons heights (Morison, 
Dickinson, Hancock, et al., 2020). We focus our analysis exclusively on the first two moments of the SSH 
distribution, henceforth referring to them as the ATL12 SSH (h) and variance (σ2), respectively.

In the following, we undertake an initial assessment of the ATL12 product's role in understanding sea-level 
trends. First, we show overall comparisons between ATL12 data at TGs, and the radar altimeter Jason-3. 
Next, we present a global view of the sea-level trends estimated from each altimeter. We then discuss the 
basin-scale oceanographic patterns that are detectable from the ATL12 record. Due to the short length of 
the ICESat-2 observations (2 years) the level of instrumental signal-to-noise ratio currently precludes an 
investigation of synoptic and climate variability. Using the current uncertainties, we perform a qualitative 
error analysis to elucidate the timelines for which climate variability may begin to emerge from the high-
er-frequency noise. We conclude with a discussion of future opportunities, limitations and avenues for 
further research.

2.  Data and Methods
To assess the performance of the ICESat-2 over the global ocean we acquire several data products for com-
parison that are publicly available. The ICESat-2 ATL12 Ocean Surface Height Version 3 is provided by the 
National Snow and Ice Data Center, which is updated quarterly in accordance with the 91 days repeat time 
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of the satellite (Morison, Dickinson, Hancock, et al., 2020). At the time of writing, we use the latest data that 
spans October 2018 through November 2020. We retrieve the ocean height (h) variable and variance (h_var) 
for each along-track beam included in the product (see Morison, Dickinson, Hancock, et al., 2020). From 
the National Center for Environmental Information at NOAA, we obtain the Jason-3 Geophysical Data 
Records that cover the ICESat-2 sensing period (Lillibridge et al., 2019). We extract the sea surface height 
anomaly (SSHa) via the ssha_mle3 variable, which uses the maximum likelihood estimator 3 algorithm 
for retracking (Thibaut et al., 2010). We explored additional comparisons with the SARAL/ALTIKA data 
set but found the data during the ICESat-2 period to require specialized processing due to its drifting orbit 
(Desai, 2013). All data are acquired as along-track products.

In both products, the ocean height variables are provided with geophysical corrections applied. These 
include tides (ocean and solid-earth) and the inverted barometer effect (Morison, Dickinson, Hancock, 
et al., 2020). After experimenting with different corrections, we found keeping the corrections applied and 
subtracting the sea-state bias gave the best results (not shown). The ATL12 ocean elevation data are pro-
vided relative to the IGS14 reference ellipsoid and include a geoid estimated from the Earth Gravitational 
Model 2008. We subtract the geoid at each ATL12 ocean height to yield dynamic ocean topography (DOT; 
e.g., Kwok & Morison, 2011). This enables a more direct comparison to the Jason-3 SSHa, which reflects 
SSH relative to the mean sea surface estimated between 1993 and 2009 with the MSS_CNES-CLS11 model 
and contains the geoid estimate (Picot et al., 2018).

Water pixels are isolated in the ATL12 product using the Global Self-consistent, Hierarchical, High-resolu-
tion Geography Database buffered up to 20 km to include near-shore areas such as low-lying land surface, 
although this still excluded some coastal data (e.g., Figure S2; Morison, Dickinson, Hancock, et al., 2020; 
Wessel & Smith, 1996). We perform additional masking by excluding samples that do not fall within the 
ocean polygons available from the Open Street Map project (OpenStreetMap Contributors, 2017). We also 
excluded data acquired during drag make up operations (Morison, Dickinson, Roberts, & Robbins, 2020). 
We experimented with removing data acquired during commanded satellite maneuvers performed over 
the central Pacific (“ocean scans”) but found removal of these data reduced the amount of data for trend 
computations and thus their quality.

To assess ATL12 DOT at the coast, we use data from the global TG network maintained by the Joint Archive 
for Sea Level (JASL) and accessible through the University of Hawaii Sea Level Center/Joint Institute for 
Marine and Atmospheric Research. As data from the Research Quality stream is not available after 2019, 
we use data from the Fast Delivery stream which has records available for most TGs through August 2020 
(Caldwell, 2015).

We compute residuals using linear rates calculated between ATL12 ocean heights that overlap in space and 
time with the other data sources. We do not account for seasonality in the trends, as the limited data prohibit 
robust recovery of the annual cycle.

For the radar altimetry products, we consider three separate spatial grids with resolution 0.1°, 0.25°, and 
0.5°, respectively. In each grid cell, we produce a time series for each sensor (ATL12, Jason-3) by taking an 
average of the available data. The average of the ATL12 DOT is weighted by the inverse of the variance (σ2) 
provided with the product. For all altimetry datasets, we exclude outliers that lie outside the 99th percen-
tile. Only data that overlap in time between sensors are considered. We then difference the linear rates of 
the ATL12 DOT computed using weighted least squares with linear rates of the Jason-3 computed using 
ordinary least squares.

Next, we consider TGs in the JASL Fast delivery stream with records that overlap with the ATL12. Within 
a 0.1°, 0.25°, and 0.5° square centered on each TG we compute an average of the ATL12 data. We treat data 
that lie beyond ∼1 standard deviation of the median as outliers in each ATL12/TG comparison (Iglewicz 
& Hoaglin,  1993). This additional consideration is motivated by the reduced sample size and enhanced 
variability of the TG comparisons in the coastal oceans relative to the global oceans. We experimented with 
additional treatments of outliers, including more flexible median filters, but found negligible differences 
on the overall results (not shown). We compute the residual between the linear rate for the ATL12 DOT 
estimated using general least squares and the ordinary least squares linear rate of the TG data. We discard 
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residuals greater than 100 cm for both TG and Jason-3 comparisons, resulting in 104, 194, and 215 ATL12/
TG comparisons for 0.1°, 0.25°, and 0.5°, respectively, and greater than 75,000 for all Jason-3 grid sizes.

3.  Results
Figure  1 shows an overview of the linear rate comparisons between the ATL12 DOT, JASL hourly fast 
delivery TG records and Jason-3 along-track altimetry retrievals. The violins combine a boxplot and histo-
gram, with the median and quartile ranges as horizontal dashed lines, and the kernel density estimate of 
the distribution on the vertical axis. The mean and standard error are marked for each violin. The size of 
the grid has a clear effect on the ATL12-TG residuals. The extremes and standard errors are inversely cor-
related to grid size, as larger samples of ATL12 DOT mitigate the impact of outliers. Note that vertical land 
motion affecting the TG rate calculations is largely within the noise of the residuals. The effects of gridding 
are smaller on the ATL12-Jason-3 residuals, as the open-ocean variability is reduced relative to the coastal 
waters sampled by TGs and sampling sizes are negligibly different.

In Figure 2 we present the ATL12 - JASL TG 0.5° comparison spatially to highlight regional performances. 
The 0.5° comparison performed markedly better than the smaller grid sizes. There is no obvious global 
bias to the residuals, and we do not find substantial differences at high latitudes due to orbital convergence 
near the poles, but some coastlines perform markedly better than others. The Atlantic Coastlines show 
good agreement, with the exception of a few TGs in high latitudes and the Caribbean Islands. The Pacific 
residuals are more heterogeneous, with good agreement along the East Asian and Western South American 
Coasts, but poorer comparisons along Western North America and the Tropical Pacific Islands. The resid-
uals along the Indian and East African Coasts are particularly high, indicating errors in one or both of the 
data sources along these coasts.
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Figure 1.  Violin plots combining boxplots and histograms for ICESat-2 comparisons. The median and quartiles are 
marked as horizontal dashed lines, and the width of the violin shows the smoothed kernel density estimate. The 
underlying distributions are residuals between ATL12 minus the Joint Archive of Sea Level (JASL) hourly fast delivery 
records (blue), and ATL12 minus Jason-3 (teal). Mean and standard error are reported for each comparison. ATL, 
Advanced Topographic Laser.
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However, over the global oceans, there is remarkable agreement between ATL12 DOT and Jason-3 SSHa 
(Figure 3). Overall, the two data sources have an absolute residual DOT SSH  mean of 3.60 ± 0.03 cm yr−1 
with a standard deviation of 5.94 cm yr−1. There are clear basin scale patterns, especially in the equatorial 
band of the Pacific. Similarly, the Indian Ocean shows excellent agreement, with elevated rates in the cen-
tral and Northern regions, and negative rates further south. Very similar regional patterns are also visible in 
both data sources, such as the sea-level fall in the Red Sea, an absence of sea-level change in the Mediterra-
nean Sea, and high rates of rise in the Baltic Sea. A number of localized features are apparent, including the 
energetic western boundary currents in the North Hemisphere, and the eddy-driven Antarctic Circumpolar 
Current. Although particularly noisy ICESat-2 tracks appear as roughly N/S streaks in several places (such 
as the northern coast of Brazil), these typically arise from data outliers in a single orbit and can be isolated 
and removed with specialized post-processing.

Nevertheless, there is still considerable noise associated with the ATL12 trend estimates. Figure S3 cap-
tures the substantial amount of spatiotemporal variability in 1.0° grid cells along the U.S. East Coast. While 
this variability contains climate signals that manifest as mm-scale SSH changes, the observed cm-m scale 
variations are mainly imparted by instantaneous oceanic and atmospheric conditions that can be reduced 
through averaging as the ICESat-2 time-series lengthens.

Figure 4 presents a qualitative estimate of the effects of further ATL12 samples on uncertainty of the es-
timated trends. Here we consider 0.25°, 0.5°, and 1.0° grid sizes spanning the global oceans. In each grid 
cell, we construct a single time series  DOT  by averaging N  ATL12 DOT samples, weighted by the diagonal 
covariance matrix Q of ATL12 uncertainty estimates that fall within the same hour:

    
11DOT DOTT TA Q A A Q (1)

where is A is an N  x 1 identity matrix. We then average and propagate the covariance estimate of  DOT  
using the variance propagation law to result in Q:
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Next, we generate a 7 years (∼November 2018–November 2025) synthetic time series  DOT S and SQ  by 
bootstrapping with replacement. The synthetic time series for each 0.25°, 0.5°, and 1.0° grid in the glob-
al oceans have an experimentally determined semimonthly, monthly, and bimonthly sampling interval, 
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Figure 2.  Global comparisons of ATL12 DOT rates in a 0.5° box centered on hourly tide gauge data acquired from the 
Joint Archive of Sea Level at the University of Hawaii. Data exceeding ∼1 standard deviation of the median is discarded 
in each time series. ATL, Advanced Topographic Laser; DOT, dynamic ocean topography.
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respectively (Figure S4). Finally, we estimate linear trends for each successive sample in time of  DOT S, 
weighted by SQ  (Figure 4).

While not a rigorous accounting, the standard error of the rate estimate improves considerably for all grid 
sizes. In one sense, these are conservative estimates, given that the temporal correlation of the global sea 
level trend is not accounted for and will become more apparent as the time series lengthens. However, low-
er frequency ocean process variability will also further impact the uncertainty estimates as the time series, 
obfuscating temporal correlations that would otherwise be apparent. Additionally, there are uncertainties 
in the geophysical corrections such as sea state bias, the calculation of the geoid used to calculate DOT 
from ocean elevation, and unaccounted for instrumental uncertainties that require elucidation beyond this 
analysis.

4.  Discussion
Despite having a short time-series relative to TG and radar altimeter records, ICESat-2 derived products have 
already been shown to be important observations for a variety of scientific purposes. For example, Klotz 
et al., (2020) map individual waves along the ICESat-2 track and infer wave spectra and wind speed. Others 
have explored wave detection in sea ice (Horvat et al., 2020), inland water monitoring (Ryan et al., 2020; 
Yuan et al., 2020), and bathymetry detection (Albright & Glennie, 2020; Armon et al., 2020). By demonstrat-
ing general agreement between independent data sources (Figure 1), our analysis indicates an important 
role for ICESat-2 in observing ongoing sea-level change.

BUZZANGA ET AL.

10.1029/2020GL092327

6 of 9

Figure 3.  Global sea-level rates in 1° grid computed from ICESat-2 ATL12 (over the period October 2018–November 
2020; top) and Jason-3 (October 14, 2018–August 2020; bottom). Individual ATL12 samples are averaged by hour and 
then subjected to linear least squares fitting. The two data sources have a mean absolute residual of 3.60 ± 0.03 cm yr−1 
with a standard deviation of 5.94 cm yr−1. ATL, Advanced Topographic Laser.
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Both along coastlines (Figure 2, Figure S5) and in the open ocean (Figure 3) ICESat-2 observations com-
plement existing measurements by filling in the gaps between TGs and altimeter tracks (Figure S2). The 
large-scale oceanographic patterns seen in Jason-3 are clearly visible in ATL12 products at much higher 
resolution (Figure 3). For example, the effects of the 2019 La Niña that dominated tropical Pacific sea-level 
change during the ICESat-2 sensing period (October 2018 - Present) are clearly present. The enhanced 
easterly trade winds and associated circulation led to anomalously high sea-level rates near Indonesia and 
lower rates in the central and eastern Pacific (Figure 3). Also clearly evident are the high rates of sea-level 
change in much of the Indian Ocean, arising from the anomalous Indian Ocean Dipole event that occurred 
in late 2019–2020 (Lu & Ren, 2020). Mesoscale eddies are well sampled, and ICESat-2 can contribute to 
investigations of eddy spatial structure (Chelton et al., 2007) and their role in transporting ocean heat and 
salinity and kinetic energy (e.g., Dong et al., 2014; Ezer, 2015)

There are still non-negligible uncertainties in the ICESat-2 measurements (Figure  4). However, as with 
radar-altimeters, the signal-to-noise ratio will increase as the data record lengthens. Moreover, recent work 
has sought to improve the estimation of sea-state bias from laser altimetry (J. Morison et al., 2018), while 
ongoing research is targeting the substantial uncertainty caused by large waves (Morison, Dickinson, Han-
cock, et al., 2020). Additionally, a monthly mean sea-surface product (ATL19) gridded at 0.25° between 
±60° and at a 25 km projection at the poles will be released in 2021.

Such improvements will further enhance ICESat-2's role in understanding sea-level change. The excellent 
agreement with the Jason-3 altimeter data highlights the potential for ICESat-2 to contribute to our existing 
observations of sea level. Particularly important are coastal and polar oceans, where existing altimetry data 
is degraded and/or absent (Cf. Figure 2, Figure S6). These historically undersampled regions are important 
due to the central role of the polar oceans in the climate system (e.g., Fyke et al., 2018) and the socioeco-
nomic impact of sea-level change at the coast (e.g., Kirezci et al., 2020). Moreover, sea-level variability is 
often greater along the coast than in the open ocean, due primarily to the impact of bathymetry on dynamic 
processes (e.g., Hughes et al., 2019).
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Figure 4.  Uncertainty reduction through time of synthetic ATL12 data in 0.25°, 0.5°, and 1.0° grid cells spanning 
the globe. Synthetic data is created by bootstrapping the averaged ATL12 DOT and variance within each grid cell and 
propagating the uncertainty. The heavy lines show the median estimate, and the shading indicates the 95% confidence 
interval for each grid size. ATL, Advanced Topographic Laser; DOT, dynamic ocean topography.



Geophysical Research Letters

ICESat-2 offers a new observational tool for understanding coastal sea-level propagation and its physical 
drivers. No individual sensor by itself can provide a complete sampling of the numerous processes at the 
coast (Woodworth et al., 2019), necessitating a suite of observational tools. This suite will continue to grow 
due to the commitment by ESA to support Copernicus through 2030, and the upcoming NASA SWOT and 
NISAR missions. These instruments will continue to advance our understanding of sea level drivers in the 
coming years and decade. As tidal flooding and event-driven surges continue to impact coastal communi-
ties, this is societally relevant information crucial for fostering mitigation and adaptation to ongoing climate 
change.

Data Availability Statement
All data used in this study is freely available. ATL12 ICESat-2 data are available at the NSIDC (J. H. 
Morison,  2020; https://nsidc.org/data/ATL12/versions/3). Jason-3 data are available from NCEI (Lil-
libridge, 2019; https://www.ncei.noaa.gov/products/jason-satellite-products). Tide gauge data are available 
from the University of Hawaii Sea Level Center (Caldwell, 2015; https://uhslc.soest.hawaii.edu/datainfo). 
Water polygons for masking are available from Open Street Maps (OSM 2017; https://osmdata.openstreetm-
ap.de/data/water-polygons.html).
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